

NDIA 46th Annual Fuze Conference

An Overview of the MEMS Fabrication Infrastructure

EF Cooper

BT Fuze Products

Division

L3 Communications
Corporation

Dr. R. Verma

Dr. A. Desai

Dr. M. Sivilotti

Tanner Laboratories

April 30, 2002

MEMS Infrastructure Overview

- "There is plenty of room at the bottom."
- However, how do we work at the bottom?
- Micro-electro-mechanical-devices (MEMS)

MEMS Devices

- Similar to larger scale devices and comprise:
 - Sensors
 - Actuators
 - Processor
- Example, Digital Micro Mirror Device (DMD) by Texas Instruments

MEMS Devices

MEMS Devices

Digital Micromirror Device

Thursday, 18 May 2000

Microelectromechanical Systems (MEMS) Short Course

M. Adrian Michalicek, 2000

Slide 50

Promises

As with all emerging technologies, the MEMS industry had been predicted to revolutionize technology and our lives.

Promises Kept

- Significantly lower manufacturing costs
- Small inertial mass
 - shock resistance
 - higher band width
- Particularly realized in the area of:
 - sensors
 - signal switching

Promises Broken

Exponential Growth of Annual Semiconductor Sensor Papers!

Promises Broken

MEMS has promised to revolutionize many aspects of life. The promise has lead to an increased interest in MEMS sensors. However, the MEMS field as a whole has not delivered on its promises.

MEMS Market Forecast 1995

Exponential Growth of MEMS Market with Projected Year 2000 Sales to Approach **\$14 Billion** Worldwide!

MEMS Market Forecast 2000

Worldwide Forecast for MEMS

Source: Cahners In-Stat Group

Technical Limitations

- Difficulty in developing MEMS processing technologies underestimated
- Functionality difficulties normally not an issue with macroscopic devices
- Requirements for components and sub systems overlooked (packaging MEMS devices)
- Relatively imprecise devices

Small but Fairly Imprecise

Design rules determine initial separation!

Features masked in the same layer must have a minimum separation distance between them. As a result, interlocking micromechanical devices have the same scaled tolerance as 18th century mechanisms.

J. H. Comtois, Air Force Research Laboratory, 1998.

MEMS Promises

In light of the inflated market expectations, we do not want to discount the advances and improvements MEMS devices have provided.

MEMS Advantages and Limitations

Advantages

Batch processing methods

Low cost devices

Small Size and Weight

Shock resistance

Integrated with CMOS

High band width and

Better control of actuators

Limitations

Imprecise fabrication

methods

Absence of foundry

facilities

Nascent processing

technologies

Expensive and complex packaging

CAD Design tool

inaccuracies

Fabricating MEMS Devices

- Captive foundries
- R&D Prototype Facilities
- Commercial Production Facilities

MEMS Foundry Facilities

- To a large extent, MEMS foundries have focused on Silicon based processes.
- Many Silicon MEMS foundries are a second life for otherwise obsolete semiconductor technology. Supplemented with MEMS specific equipment.
- Processes using other materials remain relatively undeveloped by comparison.

MEMS Prototype Facilities

- Several foundries offer services
 - CRONOS (MUMPS)
 - Coventor (MPW)
 - MEMS Exchange (consortium with foundry like services)
 - Tanner Research
- Each foundry service offers certain kinds of MEMS processes.

Commercial Production Foundries

- Supplier data base survey:
 - www.cmc.ca/Fabrication/Micromachining/ micromachhp.html
 - home.earthlink.net/~trimmer/mems/Stroud Dbase.html
- 10k units/month "high aspect ratio"
- Thirteen potential sources identified
- Four sources positive response

Commercial MEMS suppliers

Supplier	Processes
Goodrich Aerospace	Si bulk and surface
JDS Uniphase	Si bulk and surfaceLimited UV LIGACapability for X-ray LIGA
Standard MEMS	SI bulk and surfaceIntegration of active electronic devices
Honeywell, ISPR	Si bulk and surcaceWafer bonding

Commercial MEMS Foundries Common Themes

- R&D work must lead to significant production volumes
- Designs must be suitable for suppliers processes
- Engineering services available
- Porting unlikely
- Availability and lead times dependent on work loads
- Will not risk process contamination

Closing Remarks

- "...the MEMS industry right now is in the same state as the semiconductor industry was 35 years ago." Finke, D., MEMS are Changing the Rules, ECN, May 15, 2000.
- "The IC world has a couple of standardized processes... bipolar, BICMOS, or CMOS. We don't have that Luxury." Richter, A., MEMS: Tiny Parts, Big Profits?, Semiconductor, August 2001.

Closing Remarks

- DOD techniques and process not necessary for the commercial market place will need to be developed.
- DOD system level considerations such as packaging and energetics will need to be developed.